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Abstract. There is a well-known case where the homographic action of a 

real 2×2 matrix is executed on two complex conjugated variables: the classical 

case of a Kepler motion. As a consequence of this, the space expanse of the 

atomic nucleus is physically represented by a specific harmonic map. 

This is the essential fact that places the Skyrme theory as a logical 

continuation of the Newtonian natural philosophy. 
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1. The Classical Kepler Problem 

 

The classical Kepler motion is the model depicting the revolution of 

planets around Sun, or the revolution of the electrons around nucleus, within the 

framework of classical dynamics. The image is usually rendered with reference 
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to material points taken as pure positions, and can be dynamically explained 

with the help of Newtonian equations of motion. In vector notation these are: 
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Here K is a constant, r


 denotes the position vector, with respect to the 

center of force, of the material point whose motion is calculated. The constant K 

does not depend on quantities related to the point considered in motion, but only 

in cases where electric forces are involved. We can simplify the algebra leading 

to solution of Eq. (1) by restricting the geometry to the plane of motion, as a 

benefit of the vector expression of the centrality of force. If the generic 

coordinates of the point in motion are ξ and η say, the Eq. (1) is then equivalent 

to the system (Mittag and Stephen, 1992). 
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with r and  polar coordinates of the moving point, in the plane of motion, with 

respect to the attraction center. The magnitude of the rate of area swept by the 

position vector is then given by 
 

   2ra  (3) 
 

By using K we can intehgrate the system (2), and thus obtain the 

analytical form of the trajectory. Let us firstly define the complex variable 
 

  ireiz  (4) 

so that (2) can be written as 
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Now, by using (3) we eliminate r
2
, so that 

 

 








  we

a

K
iz0e

a

K
z ii





  (6) 

 

where w  w1 + iw2 is a complex constant of integration and has to be 

determined by the initial conditions of the problem. The analytical equation of 

motion can be extracted then directly, by calculating the area constant (3) with 

the help of the first result of integration given in Eq. (6). In polar coordinates 

the result is given by the following equation: 
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The shape of this trajectory can be found in Cartesian coordinates ξ and 

η, whereby we have, instead of (7) the second-degree curve – a conic: 
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The center of this conic is different than the center of the force, i.e. the 

origin of the plane of motion in our case, but has the coordinates 
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In cases where  = 0, the center of this trajectory is at infinity: the 

trajectory is a parabola. 

If we assume that the center of the trajectory is at a finite distance with 

respect to the center of force, and referring the trajectory to this center by a 

translation: x = 0, y = 0, we can write 
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The quadratic form from from (10) is completely characterized by the 

2×2 special matrix 
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The eigenvalues of this matrix are  and K
2
/ 2a , with the corresponding 

eigenvectors 
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Therefore, the orientation of trajectory in its plane is defined by the 

initial conditions of the motion which, moreover, also properly define its 

relative asymmetry in the two directions of the axes. Specifically, the 

asymmetry is measured by the ratio of the two principal dimensions of the 

ellipse, which boils down to the fact that the magnitude |w| is proportional with 

the eccentricity „e‟ of trajectory. Indeed the semiaxes, customarily denoted by 

„a‟ and „b‟, and the eccentricity „e‟ calculated with their values, are given by 
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where w


 is the vector equivalent of the complex number „w‟. This notation 

makes the vector nature of the eccentricity obvious. Therefore, the initial 

conditions can actually be expressed only in terms of some „contemporary‟ 

magnitudes, to which we have only to add the partially controllable arbitrariness 

of an angle: 
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This allows us, to a great extent, to forget, at least partially, about the 

past: as long as it is represented by the initial conditions, it can be found in 

contemporary measurable quantities. These are, obviously, the components of 

the vector w


 from Eq. (13). This observation has lead to the Newtonian 

explanation for the real planetary motions in terms of contemporary quantities. 

Indeed, a force is always contemporary, and the initial conditions of the motion 

– whatever they might have been in a remote past which is never within our 

reach – are then to be read, at least partially, in some contemporary parameters 

of motion, specifically the area constant and the eccentricity. 

 

2. A Classical Description of the Nucleus 

 

As it can be seen from Eqs. (13) the semiaxe „b‟ can be imaginary for  < 0, 

in which case the trajectories will be hyperbolic. Only if  > 0, then the 

trajectories will be elliptic, so we can use them to describe the planetary 

motions. With respect to these facts, the parabolic trajectories are all 

characterized by points on the circle  = 0, i.e. 
 

  sine,cose,122
 (15) 

 

Therefore all possible finite Kepler motions that a material point can 

have around a center acting with a force inversely proportional to the square of 

distance can be attributed to the whole interior of this circle. This would mean 

that the motion of a planet or an electron indicates infinitely many possible 

initial conditions, from which it would have had to „choose‟ so to speak. The 

actual motion of a planet is perceived as if having unique initial conditions. Any 

departure from this perception has always induced arguments about some actual 

perturbations acting on the planet. This could be partially true: the discovery of 

Neptune is an example. Let us turn to the origin of the problem, and direct our 

reasoning along the following lines: Kepler motion should have reality only as a 

„snapshot‟, this fact cannot be denied, for it could not have been discovered 
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otherwise. However the planetary motion, even if we confine its description to a 

Kepler motion, is a succession of such snapshots, which have to be brought 

together to make the whole picture. Foremost, we have to find the time scale of 

such a snapshot, and this is difficult. Fortunately, we have another possibility, 

opened by the above mentioned observations. Namely, there is an a priori 

metric geometry for the defining parameters of the snapshot, which are in fact 

the initial conditions of the dynamical problem describing it. This geometry 

defines in turn a kinematics, and that kinematics offers us a natural way to 

represent a real trajectory, by continuously connecting the snapshots in  

succession.  

Indeed, it can be immediately seen that the above-mentioned freedom of 

the parameters defining the types of Kepler orbits, allows us to construct a 

Cayley-Klein geometry (Cayley, 1859; Klein, 1897) characterizing the variation 

of those orbits. We know that an absolute geometry is related to some 

conservation laws, at least as long as some realizations of SL(2, R) group 

structure are involved. And indeed, the absolute metric for the interior of the 

circle (15) 
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can be brought to the form of Poincaré metric 
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by the following transformation of coordinates: 
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The conservation laws for the metric (17) are represented by the 

following differential 1-forms 
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A natural description of the Kepler motion is the one in variables (e, ω), 

i.e. the eccentricity and the orientation of the orbit in its plane. In terms of these 

parameters the metric (16) becomes 
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We can rewrite this metric in a well-known form, by recalling that for 

elliptic trajectories „e‟ is confined to the interval between –1 and +1, so that the 

change of parameter 

  tanhe  (21) 
 

is legitimate. With this the metric (20) becomes 
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The complex parameter „h‟ from Eq. (18) has now a direct connection 

with the theory of classical Newtonian potentials via a harmonic map. In order to 

show this relationship we write here „h‟ from Eq. (18) in terms of (e, ω). We have: 
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As it happens, this equation represents a harmonic map from the usual 

space into the Lobachevsky plane having the metric (17), provided χ (and 

therefore ψ) is a solution of the Laplace equation in free space. 

The stationary values of energy functional corresponding to the metric 

(17) describe the problem of harmonic correspondences between space and the 

hyperbolic plane. This is defined as the volume integral of an integrand 

obtained from that metric by transforming the differentials into space gradients 

(Eells and Sampson, 1964; Misner, 1978). The stationary values of energy 

functional therefore correspond to solutions of the Euler-Lagrange equations for 

a Lagrangian like 
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and its complex conjugate. Then it is easy to see, by a direct calculation, that h 

from (23) verifies this equation when χ is a solution of Laplace equation, and ω 

is arbitrary, in the sense that it does not depend on the position in space. 

Nevertheless, it might depend on the local time of the Newtonian dynamics, as 

it turns out to be the case in the particular problems related to the case of the 

damped harmonic oscillator (Mazilu, 2004). We shall discuss a particular aspect 

of such dynamical problem later in this work. 

 

3. Casting New Light on the Old Nucleus 

 

At the confluence of geometry and dynamics, physics has found that the 

planetary motion in the case of solar system, as well as the electronic motion in 
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the case of classical atomic model, can be fairly depicted as a Kepler problem. 

This condition, let us recall once again, is rigorously satisfied only in cases 

where the bodies are point-like. The vector representing eccentricity in a Kepler 

orbit is related to the initial velocity that a planet, or an electron in the case of 

atom, is assumed to have had when it „started‟ orbiting around Sun, respectively 

around the atomic nucleus. One can rightfully say that by means of the present 

measurements of the eccentricities, we have at least a „partial‟ access to the past 

of the planets or electrons, as the case may occur. 

One of the most important conclusions of this perception is that the 

indecision in the initial conditions of the Kepler motion describing the planetary 

or atomic dynamics, has a precise geometrical form: it is the geometry of the 

interior of the unit circle, therefore the hyperbolic geometry of Lobachevsky. As 

in the case of planets these eccentricities are small, in real space terms the 

hyperbolic geometry applies only to a small space region, practically 

concentrated to the volume of the Sun itself. The same can be said, by analogy, 

of the nucleus – if the atom is discussed. It is therefore conceivable that this 

hyperbolic geometry would describe the content, and the manner of producing, 

of both the solar and nuclear energy, by a kind of deformation process of a 

continuous structure of their matter. This is actually what Lord Kelvin tried to 

explain by the middle of the 19
th
 century, regarding the source of solar energy. 

Here the most important conclusion though, is that this method can be 

thought of as really ascribing „a space expanse‟ of the nuclear matter, in the 

form of harmonic surfaces in space, to the regions of space spreading over 

ranges whose measure is the eccentricity of the Kepler motion. In other words, 

the harmonic maps from the physical space to Lobachevsky plane are intimately 

related either to the physics of Sun, in the case of planetary system, or to the 

physics of nucleus in the case of classical atomic model. We could not find any 

signs, in physics today, of some such theoretical description in the first case, 

i.e. the case of Sun. That is, if we don‟t consider the contemporary 

preoccupations with the seismicity of Sun and planets, which, from some 

points of view, may qualify as an application of harmonic mappings. 

However, such a conclusion seems to be fair in the case of atomic model, 

where the nuclear matter can be described by harmonic maps, and more often 

at that lately, by the model of Skyrme. 

 Before getting into that subject, let us make nevertheless a connection 

with the conclusions from Mazilu and Agop (2012), regarding the space 

expanse of the atomic nucleus. In the description above, the central expanse of 

the atomic space plainly qualifies as the space into which the electron plunges, 

or from which it is ejected, in some classical „Wilson processes‟ that involve or 

not a production of light. In other words, if the condition of material point of the 

nucleus is the one making us reluctant to accept the reality of such processes, 

then it is time to forget about it. Indeed, the contemporary space expanse of the 

atomic nucleus, like the contemporary space expanse of the Sun itself for that 
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matter, should be the reflection into present of a distant past, as it appears in the 

description of the planetary system by Kepler motions. 

This fact puts an interesting spin – properly, as well as figuratively, as 

we will see here – on the ejection of an electron or its absorption by the nucleus. 

When plunging into the nucleus, an electron appears as if it goes into the past, 

while when it is ejected from the nucleus it suddenly pops up into the present. 

The past and the present of an electron meet therefore inside the nuclear matter. 

For once, part of this process – popping up into present – has been met in a 

popular model involving the macroscopic counterpart of the atom – the 

planetary system. Indeed, the most familiar cosmogonic model of the planetary 

system is that in which the planets are born from a primary nebula by a process 

of ejection due to pure mechanical effect of the rotation. By carrying the 

analogy in reverse – i.e. from the atomic model to the planetary one – one might 

say that the cosmogonic model misses an essential part, corresponding to the 

ingestion of the electron by nucleus. Indeed, it is momentarily hard to say, 

within astrophysical experience today, what would be a cosmogonic process 

that corresponds to this quite natural one from the atomic realm. 
In hindsight, this transition present-past and vice versa means actually 

to offer a physical content to time. The fact was brought to light for the first 

time by Richard Feynman in the construction of his famous graphs (Feynman, 

1948; Feynman, 1949). These represent the transition from the usual continuous 

description in space and time by differential equations, to the aparent 

accidentality of events in the atomic realm. They make obvious the necessity of 

discussing the time by its physical content. The positron, for instance, is an 

electron going back in time: while for the electron the time goes normally, 

toward future, for the positron the time goes toward past. 

One other pertinent observation here is related to the metric (22). It is 

well-known in theoretical physics: the Fock metric of the velocity space in 

special relativity (Fock, 1964). Indeed, this metric can be produced as an 

absolute metric in the three-dimensional space of velocities, in view of the fact 

that all possible velocities of the matter formations in the universe are smaller 

than the speed of light. The resulting metric is given by Eq. (20) where e is this 

time the ratio of the velocity in matter and the speed of light, and  is the metric 

on the unit sphere. One can say that the only thing well specified here is the 

speed of light. All the other velocities, regarding material bodies are 

contingencies. This is why the Fock metric is well suited in producing a priori 

minimum information measures in velocity space (Evrard, 1995). The metrics 

(20) or (22) provide just such an a priori minimal measure, based on the same 

principles as the relativistic ones. As a matter of fact, their very source, the 

absolute metric (16) involves the special metric tensor, characteristic to a 

constant curvature space. This conveys properties of universality to a special 

geometrization of the harmonic maps representing the nucleus. 



Bul. Inst. Polit. Iaşi, Vol. 65 (69), Nr. 1, 2019                                          53 

 

4. Conclusions 

 

The main conclusions of the present paper are the following: 

i) The classical Kepler problem in correlation with the Lobachevsky 

plane properties is established. 

ii) Since the above correlations implies the functionality of harmonic 

maps by means of an operational procedure, an alternative to the Skyrme model 

for the nucleus can be identified. 
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NUCLEU ATOMIC ȘI MAPE ARMONICE 

 

(Rezumat)  

 

Este cunoscut faptul că acțiunea omografică a matricilor reale 2x2 devine 

executorie prin intermediul a două variabile complexe: cazul clasic al unei mișcări de 

tip Kepler. În consecință, expansiunea spațială a nucleului atomic poate fi mimată prin 

intermediul unei mape armonice. Într-un asemenea context, modelul lui Skyrme poate fi 

admis ca o extensie naturală a filosofiei newtoniene.    
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